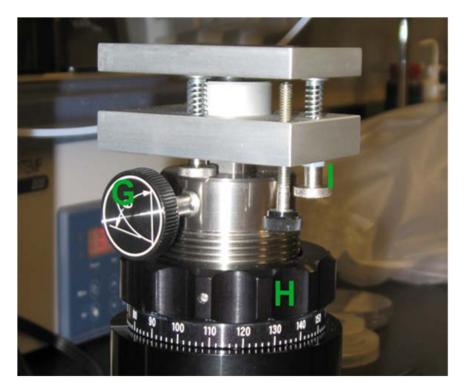

Materials/Instrument Requirements:

Sample surface should be at least 0.5 x 0.5 cm in size.

Liquids used with the plastic pipette tips need to be compatible with the plastic. If you don't know whether your material will work, contact NBTC staff BEFORE you use the solvent.

The plastic 20μ L micropipette tips can be used for contact angle measurements, not hanging drop measurements. The blunt metal syringe tips can be used for either contact angle or hanging drop measurements.


Instrument parts:

- A: Coarse syringe adjustment screw
- B: Fine syringe adjustment screw
- C: Syringe holder screw
- D: Syringe holder

- E: Focusing knob
- F: Left/Right Stage adjustment knob

- G: Coarse stage adjustment knob
- H: Fine stage adjustment knob
- I : Stage tilt adjustment screws

Initialization:

Log on to the instrument using the central logon computer.

Set up the instrument.

1) Remove the dust cover from the goniometer.

2) Turn on the liquid dispenser.

3) Uncap the cover on the camera and turn on the light to about 50% (So the line is roughly vertical).

4) Check that the fine stage adjustment shows about 1cm of threads, and that the fine syringe adjustment screw is about halfway out.

Set up the liquid dispenser.

Place a sample cup underneath the syringe tip to catch any liquid that comes out during dispenser initialization.

Start the Drop Image Advanced program.

"Dispenser not initialized, do you want to Reset now?" YES

-The syringe location will be reset. Some liquid may come out of the syringe.

-Upon startup, there should be a Live Image Window visible. If not, go to View \rightarrow Start Pass-thru so that a live image can be seen.

-If the live image is dark, make sure that A: The light is on, B: the camera is uncapped, and C: The stage is not blocking the light path.

Set up Drop Volume Controller

1) Go to Device Control \rightarrow Drop Volume Control. If Drop Volume Control can be selected, select it and skip to the next step. If not, go to Edit \rightarrow Options, check "Drop Volume control", click OK, and Yes when the program asks if it should install and reset the dispenser.

Drop Volume Control Menu:

Change syringe Ab	out cont	rol		
Valve Reservoir Orop		tput step out step	Syringe le	vel Fill
Volume step: Syringe volume:		μL μL	0%	0.00 µL
Full stroke time:	5.0	sec		Purge
Rinse Cycles: 1			Level up Slow	
🔁 Start	н	elp		Close

Volume step: The amount of liquid (or air) that the syringe will draw in when "Input step" is clicked, or which will be expelled when "Output step" is clicked. The volume step can be anywhere between 0.1 and 250µL. Values between 1 and 20mL are typical in many experiments.

Full stroke time: Time it takes for the 250μ L syringe to travel between both extremes. This will affect the speed of any output or input step, including those programmed in the Event file. The stroke time can be anything from 1-1200s. Values in the 5-30s range are typical in many experiments.

2) Replace the tip on the pipettor, if needed or desired.

3) The syringe can be filled from the open end or from the syringe end. We recommend that you fill from the syringe end using the following method.

-Set "valve" to "drop".

-Place the syringe into the liquid.

-Click "Fill".

-Rinse several times by putting a waste cup under the syringe, clicking "purge", and repeating the steps above.

-Check that the liquid is ready to be expelled by clicking "output step" with the volume step set to about 10μ L. A droplet should emerge.

4) Leave the Drop Volume Control window open so that you can add or remove liquid from the surface as needed.

Taking a Contact Angle Measurement:

Set up the stage:

1) Loosen the coarse stage adjustment knob while supporting the stage with your hand so it doesn't fall. Lift the stage gently until the bottom of the stage is visible on the live view screen, covering the bottom 5-10% of the live view. The position of the stage can be further adjusted using the fine stage adjustment knob.

2) Place your sample on the stage. The sample and stage together should cover less than about 20% of the live image view. Note: If the sample is shiny the edge may not be clearly visible.

3) Support the syringe tip assembly with your hand while loosening the coarse syringe adjustment screw, gently lower the assembly until the tip is~2 mm above the sample, then tighten the screw again.

4) Move the stage to the left and right to find the syringe tip. Focus on the syringe tip. The fine adjustment screw can be used to raise and lower the syringe tip until it is fully in view of the screen and focused. For typical measurements, the syringe tip should be centered within the frame, in focus, and quite close to the surface (less than 1mm). If the surface is slanted, the tilt can be adjusted with the tilt adjustment screws.

Choose/Set Up an Experiment:

If you have no done so previously, make a personal folder in "User Data" folder on the desktop.

To perform an automated liquid dispensing or take measurements that are not regularly spaced in time, start with step 1. If you do not want to do this, skip to step 3.

1) Click on the ("Time File") and set up the timing and number of data points you want, using the variables shown in the table below. Save As a time file in your folder.

	10 + a*ex 10 + a*i^t		.1 1		Fill		Ope	n file		ave ve as
Nurr	ber of tim	e values:	100	Ch	ange		Н	elp		lose
1	1	2	3	4	5	6	7	8	9	10
	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	1.00
0	1.10	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90	2.00
0	2.10	2.20	2.30	2.40	2.50	2.60	2.70	2.80	2.90	3.00
0	3.10	3.20	3.30	3.40	3.50	3.60	3.70	3.80	3.90	4.00
0	4.10	4.20	4.30	4.40	4.50	4.60	4.70	4.80	4.90	5.00
0	5.10	5.20	5.30	5.40	5.50	5.60	5.70	5.90	5.90	6.00
0	6.10	6.20	6.30	6.40	6.50	6.60	6.70	6.90	6.90	7.00
0	7.10	7.20	7.30	7.40	7.50	7.60	7.70	7.80	7.90	8.00
0	8.10	8.20	8.30	8.40	8.50	8.60	8.70	8.90	8.90	9.00
0	9.10	9.20	9.30	9.40	9.50	9.60	9.70	9.80	9.90	10.0

2) Click on the ("Event File") to make an event file. Load the Time File you want to use. Save As an event file in your folder.

٧o	Time (s)	Volume (ul)	Measure	-		Save
1	0.100	0.20	1		Open	Save
2	0.200	0.40	1		Help	Save as
3	0.300	0.60	1			Dave as
4	0.400	0.80	1		Use Right mouse	
5	0.500	1.00	1		button to toggle Measure On/Off	Cancel
6	0.600	1.20	1			
7	0.700	1.40	1		Create function	
8	0.800	1.60	1		Function type	
9	0.900	1.80	1		🔘 Sine 🦕	$\overline{\mathbf{\nabla}}$
10	1.00	2.00	1		🔿 Square	
11	1.10	2.20	1	1		
12	1.20	2.40	1		💿 Saw 🗧	$\mathbf{\Sigma}$
13	1.30	2.60	1			
14	1.40	2.80	1		V(max): 10	(μL)
15	1.50	3.00	1			
16	1.60	3.20	1		Period: 20	(s)
17	1.70	3.40	1			_
18	1.80	3.60	1		Fill	
19	1.90	3.80	1	-		

-"Volume" refers to the total amount of liquid expelled or drawn into the syringe since time 0. In the example shown, the liquid will be coming out at a steady rate of 2μ L/sec.

-If "measure"=1, it will measure at that time. If you do not want to take a measurement at that time, set "measure" to 0. In the example shown, a measurement will be taken every 0.1 seconds.

3) Create a method by clicking MET on the top menu bar (see image below). When the method is set correctly, Save As a method in your folder.

-Data source: video, unless you are taking data from a previously-run experiment.

-Report: If "screen" is selected, a full report of all data points will pop up at the end of the measurement. This report is in rtf format.

-Data storage: If you want to save every image from which the measurements are taken, choose a file format. If not, choose "none". Images will be saved with the same file name as you have saved the method—filename[0].jpg, filename[1].jpg, etc.

-Calculation: This is the method used to determine the droplet shape accurately. "Contour" is appropriate for most applications. Check the help section for more information.

-Data File Directory: This is where your report and image data will be saved. Use the same folder you have saved the experiments to.

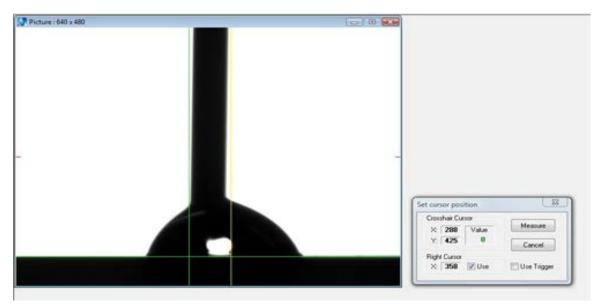
-Type of measurement: "Constant volume" is appropriate for most applications. This instrument does not have an oscillator.

-Type of drop: Choose Contact angle, and click the L and R to measure only the left or right side of the droplet (if the letter is visible, a measurement will be taken).

-Timing: If you saved an event file that you want to use, be sure to click the Timing: Event file button and also load the event file. If you skipped steps 1 and 2, choose Equidistant and fill in the number and frequency of measurements you wish to take.

Data source:	Data storage:	Data file direct	tory:	Open file	Save	
Video 🔶	JPG Calculation) 🗁 C:\ C DROPin Data	nage		Save as	
 None Screen 	🔘 None 🔘 Ratio	1125	standard	Help	Close	
O Printer	Contour	Drive:	0 -	Time/event file		
🔘 Disk file	Optimized		-	Directory:		
Type of measurement Constant volume Relaxation - pulses: 1 Coscillation		Type of drop Pendant Sessile d Contact a	drop rop	c:\dropimage\data File name: default Get file name		
Constant volum	e parameters					
Timing	Number of	measurements:				
🔘 Time file	Event file	Time delay:	2 s			
🔘 Equidistar	nt	Time interval:	0 s	Keep constant: 🚺	/olume 👻	

4) Create a parameter file by clicking PAR on the top menu bar. (See image below.) Load the method you want to use. "Droplet phase" is what's in the syringe, and "External phase" is the fluid you're putting that droplet into (typically air). "Solid phase" is the surface. Save As a parameter file in your folder.

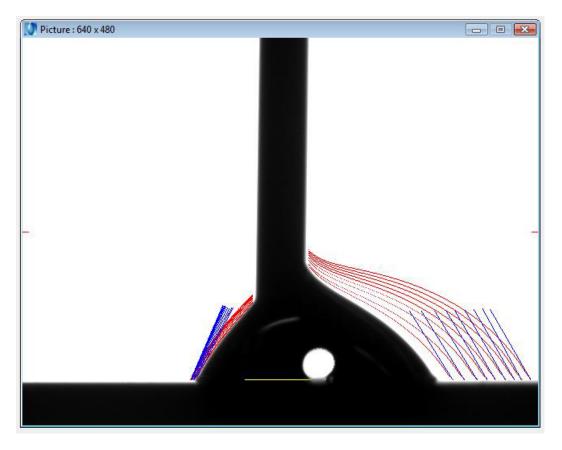

-There are two things these settings are used for: 1) The instrument will look at the relative densities of the droplet and external phase to determine whether it is looking for a droplet at the top or bottom of the screen. 2) The materials selected will be displayed on your report or contact angle file if you use either of those. If you are just checking the contact angle, just set the droplet phase to something more dense than the external phase, and don't worry about the solid phase.

-To get a material added, please contact the tool manager.

Method Name: 51910method		0	pen file	Save
)irectory: c:\drop	> Sa	ave & Run	Save as	
	Get method		Help	Close
Droplet phase:	Water	•	Density: 0.99	987 (g/mL)
External phase:	Air	•	Density: 0.00	013 (g/mL)
Solid phase:	Stee	-		
Comments:	Teflon Mylar Polyethylene Wood Nylon		_	
	Cast Iron Paint Film Steel			

Run an experiment:

-The vertical green line defines the left side of the needle and is moved by holding down the left mouse button. The vertical yellow line defines the right side of the needle and is controlled with the right mouse button. The space between these two lines will be ignored in calculating the shape of the droplet.


-The horizontal line defines the surface. It is controlled by holding the shift and left mouse button together. Arrange the three lines as in the image above. When ready, click "Measure".

2) A measurement is taken based on your parameter and method files, along with the time and event file if you used them.

- To manually add or remove liquid from the drop use the Drop Volume Controller menu.

-A tracing of the drop and contact angles will show up during the course of the measurement. Verify that the software is correctly identifying the edges of the bubble by looking at the measurement lines. In the example of a receding contact angle measurement shown below, there was an error on one measurement (the yellow line), but the others appear to have been accurate.

-Data is saved in your folder with the filename used in the parameter measurement as "filename.log". Images will be saved as "filename[0].jpg", "filename[1].jpg", etc. A report will be saved as "filename.rtf". These files will be overwritten with the next measurement taken with the parameter file unless saved in a different location, or with a different file name.

Taking a Pendant Drop Measurement:

Set up the syringe:

1) Loosen the coarse stage adjustment knob while supporting the stage with your hand so it doesn't fall. Lower the stage completely, and put a small sample cup or Petri dish on the stage to catch any falling droplets. If you are going to be measuring one liquid in another, fill a cuvette with liquid and lift the stage until the needle is submerged in the liquid.

2) Support the syringe tip assembly with your hand while loosening the coarse syringe adjustment screw, gently lower the assembly until the tip is visible on the screen, then tighten the screw again.

3) Move the stage to the left and right if needed to center the image of the syringe tip, and focus on the syringe. The fine adjustment screw can be used to raise and lower the syringe tip to a good height. For typical measurements, the syringe tip should be centered within the frame, in focus, and near the top of the frame.

Choose/Set Up an Experiment:

If you have no done so previously, make a personal folder in "User Data" folder on the desktop.

To perform an automated liquid dispensing or take measurements that are not regularly spaced in time, start with step 1. If you do not want to do this, skip to step 3.

1) Click on the ("Time File") and set up the timing and number of data points you want, using the variables shown in the table below. Save As a time file in your folder.

	tion fill t0 + a*ex	പിടി മ	1	15			Ope	n file	S	ave
20400				- 6	Fil	1	1			
0 t-	+ t0 + a*i^t	5 D	1						Sa	ve as
Nur	nber of tim	e values:	100	Ch	ange		H	qk	0	lose
	1	2	3	4	5	6	7	8	9	10
0	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	1.00
10	1.10	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90	2.00
20	2.10	2.20	2.30	2.40	2.50	2.60	2.70	2.80	2.90	3.00
30	3.10	3.20	3.30	3.40	3.50	3.60	3.70	3.80	3.90	4.00
40	4.10	4.20	4.30	4.40	4.50	4.60	4.70	4.80	4.90	5.00
50	5.10	5.20	5.30	5.40	5.50	5.60	5.70	5.90	5.90	6.00
60	6.10	6.20	6.30	6.40	6.50	6.60	6.70	6.80	6.90	7.00
70	7.10	7.20	7.30	7.40	7.50	7.60	7.70	7.80	7.90	8.00
80	8.10	8.20	8.30	8.40	8.50	8.60	8.70	8.80	8.90	9.00
90	9.10	9.20	9.30	9.40	9.50	9.60	9.70	9.80	9.90	10.0

2) Click on the ("Event File") to make an event file. Load the Time File you want to use. Save As an event file in your folder.

No	Time (s)	Volume (ul)	Measure		0	Cours
1	0.100	0.20	1		Open	Save
2	0.200	0.40	1		Help	Save as
3	0.300	0.60	1		Help	Dave as
4	0.400	0.80	1		Use Right mouse	
5	0.500	1.00	1		button to toggle Measure On/Off	Cancel
6	0.600	1.20	1			
7	0.700	1.40	1		Create function	
8	0.800	1.60	1		Function type	
9	0.900	1.80	1		🔘 Sine 🔚	$\overline{\mathbf{\nabla}}$
10	1.00	2.00	1		🔿 Square	
11	1.10	2.20	1			
12	1.20	2.40	1		💿 Saw 🗧	\searrow
13	1.30	2.60	1			
14	1.40	2.80	1		V(max): 10	(μL)
15	1.50	3.00	1		20 00 00 00 00 00	
16	1.60	3.20	1		Period: 20	(s)
17	1.70	3.40	1			
18	1.80	3.60	1		Fill	
19	1.90	3.80	1	-		

-"Volume" refers to the total amount of liquid expelled or drawn into the syringe since time 0. In the example shown, the liquid will be coming out at a steady rate of 2μ L/sec.

-If "measure"=1, it will measure at that time. If you do not want to take a measurement at that time, set "measure" to 0. In the example shown, a measurement will be taken every 0.1 seconds.

3) Create a method by clicking MET on the top menu bar (see image below). When the method is set correctly, Save As a method in your folder.

-Data source: video, unless you are taking data from a previously-run experiment.

-Report: If "screen" is selected, a full report of all data points will pop up at the end of the measurement. This report is in rtf format.

-Data storage: If you want to save every image from which the measurements are taken, choose a file format. If not, choose "none". Images will be saved with the same file name as you have saved the method—filename[0].jpg, filename[1].jpg, etc.

-Calculation: This is the method used to determine the droplet shape accurately. "Contour" is appropriate for most applications. Check the help section for more information.

-Data File Directory: This is where your report and image data will be saved. Use the same folder you have saved the experiments to.

-Type of measurement: "Constant volume" is appropriate for most applications. This instrument does not have an oscillator.

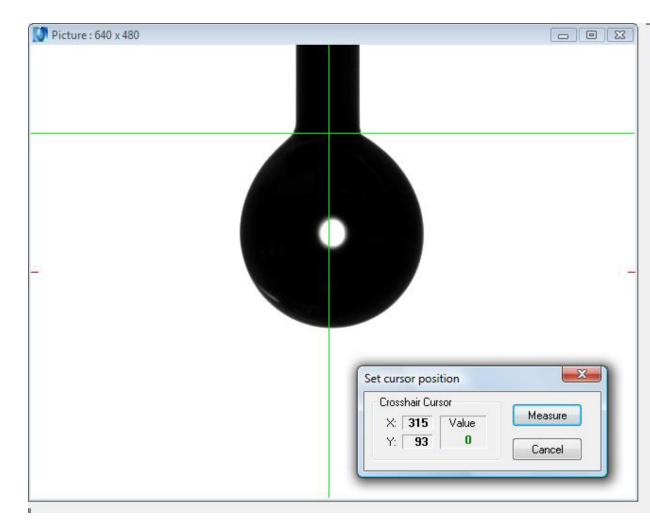
-Type of drop: Choose Pendant Drop.

-Timing: If you saved an event file that you want to use, be sure to click the Timing: Event file button and also load the event file. If you skipped steps 1 and 2, choose Equidistant and fill in the number and frequency of measurements you wish to take.

Data source:	a source: Data storage: Data file (file directory: Open file			
Video 👻	JPG 🔹) 🗁 C:\	mage	-		Save as	
Report	Calculation	🗁 Data					
None	None		C standard		Help	Close	
Screen	🔘 Ratio	1125 3.16.1	10	-			
Printer	Contour Drive:				Time/event file		
🔘 Disk file	Optimized				Directory:		
		🖃 c: [os]		•	c:\dropimage\d	ata	
Type of measurement		Type of dro	Р				
Constant vo	lume	Pendant drop			File name: def	ault	
🔘 Relaxation -	pulses: 1 🚔	🔘 Sessile drop			[
Oscillation		Contact angle			Get file r	iame	
Constant volum	e parameters						
	Number of	measurements:	50				
Timing			_				
🔘 Time file	Event file	Time delay:	2	s			
🔘 Equidistar	nt	Time interval:	0	s	Keep constant: Vo	olume 🔻	

4) Create a parameter file by clicking PAR on the top menu bar. (See image below.) Load the method you want to use. "Droplet phase" is what's in the syringe, and "External phase" is the fluid you're putting that droplet into (typically air). Save As a parameter file in your folder.

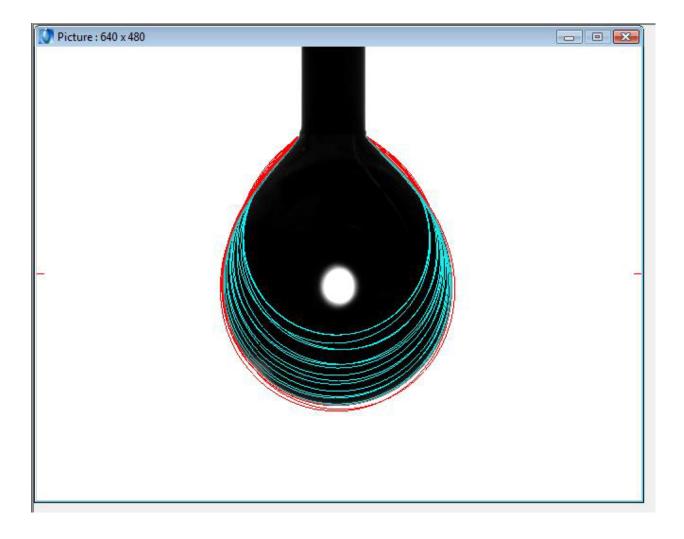
-There are two things these settings are used for: 1) The instrument will look at the relative densities of the droplet and external phase to determine whether it is looking for a droplet hanging down from or pushing up from the bottom of a needle. 2) The materials selected will be displayed on your report or surface energy file if you use either of those.


Method Name: 51910method				Save
Directory: c:\dropimage\data\tp252\			Save as	
Get method		Help		Close
Water	•	Density: 0.99	187	(g/mL)
Air	▼ Density: 0.00		13	(g/mL)
Steel	-			
Teflon Mylar - Polyethylene Wood Nylon Cast Iron				
	bimage\data\tp252\ Get method Water Air Steel Teflon Mylar Polyethylene Wood Nylon	image\data\tp252\ Get method Water Air Steel Teflon Mylar Polyethylene Wood Nylon	bimage\data\tp252\ Get method Water ↓ Save & Run Help Water ↓ Density: 0.95 Air ↓ Density: 0.00 Stee ↓ Teflon Mylar Polyethylene Wood Nylon	image\data\tp252\ Save & Run S Get method Help (Water ▼ Density: 0.9987 Air ♥ Density: 0.0013 Steel ♥ Teflon Mylar Polyethylene ♥ Wood Nylon

-To get a material added, please contact the tool manager.

Run an experiment:

1) Click the ("Start Active Experiment") to start a measurement.


-The crosshairs should be moved so that the vertical line is close to the center line of the needle tip and droplet, and the horizontal line defines the bottom of the needle tip. Its location is moved by holding the left mouse button. Arrange the crosshairs as in the image below. When ready, click "Measure".

2) A measurement is taken based on your parameter and method files, along with the time and event file if you used them.

- To manually add or remove liquid from the drop use the Drop Volume Controller menu.

-A tracing of the drop will show up for each measurement. Verify that the software is correctly identifying the edges of the bubble by looking at the measurement lines. In the example shown below, the instrument accurately traced the outline of the droplet as it got larger. The lines are not perfectly parallel because room vibration caused the droplet to move slightly during the measurement.

-Data is saved in your folder with the filename used in the parameter measurement as "filename.log". Images will be saved as "filename[0].jpg", "filename[1].jpg", etc. A report will be saved as "filename.rtf". These files will be overwritten with the next measurement taken with the parameter file unless saved in a different location, or with a different file name.

Other software functions:

To recalculate a particular data point:

Measurement → Recalculate

hofile data (DAT):	Bitmap data (BMP, GIF,) 51910para.JPG	Buffer bitmap data (RAW):
Drive/directory: C (os) C (DROPimage	Experiment: Show pictures Rate (tps): 10 Frame	Frames:
Data Data tp252 methods tests	Repeat forever. Auto m	ewind:
Calculation Method	Frames to calculate All frames Current frame	Calculate
Get new Edit	Frames: From to	Close

Note: unless you save these images in a different folder or with a different name, the next measurement using the same parameter filename will overwrite this data.

To determine surface energy from a contact angle measurement:

1) File \rightarrow Make contact angle file

-Open your parameter filename.log, choose a datapoint, and click "add" to add it to the contact angle file. Save As a contact angle file in your folder.

2) CA Tools \rightarrow your chosen surface energy calculation method.

-File Open—pick the .ca file that you just saved. Pick a solid, then the liquids, and choose your method.

-If you need other materials to be added, please talk to the tool manager.